import_cell_characteristics_df()
is a wrapper around read.csv()
to import
a .csv file with information about a cell (animal, age, sex, synapses, X- and
Y-coordinates, etc.). It replaces NA
values in the R_a
column with 0
to
remove errors caused by missing data. The resulting dataframe can be merged
with raw data into a summary table and used in downstream statistical
analyses.
Arguments
- filename
A filepath to a .csv file containing information on cell characteristics. The function uses
here::here()
to locate the filepath. See the details below for information on required columns.
Required columns
These columns are required in the raw .csv file:
letter
A character value that is a unique identifier for a single recording. Used to link data sets for evoked or spontaneous currents and cell-characteristics. Example: "A"cell
A character or numeric value representing the cell. For example, use3.1.1
for animal #3, slice #1, cell #1.sex
A character value such as "Male" or "Female".X
A numeric value representing the x-value of the cell's location in µm.Y
A numeric value representing the y-value of the cell's location in µm.age
A numeric value representing the animal's age. Can be any value as long as the time units are consistent throughout (e.g. don't mix up days and months when reporting animal ages). Do not use characters (e.g. avoid "P31" and use 31 instead).animal
A numeric value representing the animal's ID or number.synapses
A character value such as "Glutamate" or "GABA".treatment
A character value such as "Control" or "HNMPA".category
A numeric value representing the experiment type. Used to assign top-level groups for further analyses, withtreatment
as subgroups.R_a
A list of values for the access resistance, which would have been monitored at several timepoints throughout the recording. See the sectionR_a
formatting below.
R_a
formatting
R_a
is a mandatory column with information about the cell's access
resistance. Each element of this column must be a sequence of numbers,
separated by a comma and a single space. Although this will be read in as a
character, do not add quotation marks around the values in this column. For
example, 1.5, 1.5, 1.6, 1.7, 1.7, 1.8
is an acceptable R_a
value for a
single cell.
import_cell_characteristics_df()
will convert the character value into a
list of numeric values (using stringr::str_split()
). It will also convert
blanks and NA
values to 0. This allows access to be visualized as a
sparkline in the R_a
column of the interactive summary table made with
make_interactive_summary_table()
.
See also
make_interactive_summary_table()
to generate an interactive table
with cell characteristics and raw data as sparklines.
Examples
import_cell_characteristics_df(import_ext_data("sample_cell_characteristics.csv"))
#> letter cell sex X Y age animal synapses treatment
#> 1 BN 25.1.2 Male 152.92 337.19 29 25.0 Glutamate Control
#> 2 AZ 21.1.1 Female 352.62 331.74 32 21.0 Glutamate Control
#> 3 AO 17.1.1 Male NA NA 39 17.0 Glutamate Control
#> 4 BO 27.2.1 Male NA NA 32 27.0 Glutamate HNMPA
#> 5 BT 30.2.1 Male 387.19 586.98 37 30.0 Glutamate HNMPA
#> 6 CG 35.1.3 Female 164.18 366.52 36 35.0 Glutamate HNMPA
#> 7 L 8.5.2.1 Male NA NA 38 8.5 Glutamate Control
#> 8 CZ 41.2.2 Male 296.51 492.90 28 41.0 Glutamate HNMPA
#> 9 FT 72.2.1 Female 153.33 337.18 39 72.0 Glutamate HNMPA
#> 10 FX 74.1.2 Female 234.69 495.50 28 74.0 Glutamate PPP
#> 11 GF 77.3.1 Female 217.23 323.55 36 77.0 Glutamate PPP
#> 12 GI 81.1.1 Female 235.96 284.23 28 81.0 Glutamate PPP
#> 13 GK 84.1.1 Male 248.74 574.44 35 84.0 Glutamate PPP
#> 14 GR 90.3.1 Male 313.50 415.97 34 90.0 Glutamate PPP
#> 15 GX 97.2.3 Male NA NA 33 97.0 Glutamate PPP_and_HNMPA
#> 16 HB 100.1.1 Male 133.20 590.25 39 100.0 Glutamate PPP_and_HNMPA
#> 17 HC 100.2.2 Male 172.54 576.26 39 100.0 Glutamate PPP_and_HNMPA
#> 18 HG 103.2.1 Female NA NA 34 103.0 Glutamate PPP_and_HNMPA
#> 19 HN 109.1.1 Male 288.97 400.18 38 109.0 Glutamate PPP_and_HNMPA
#> 20 AV 20.3.1 Female 55.10 248.80 31 20.0 Glutamate Control
#> category R_a
#> 1 2 1.6, 1.7, 1.7, 1.8, 1.8, 2.0
#> 2 2 2.5, 2.6, 2.6, 2.9, 2.6, 2.6, 2.6, 2.7
#> 3 2 1.9, 1.9, 1.8, 1.9, 2.0, 3.0
#> 4 2 1.7, 1.7, 1.7, 1.8, 1.7, 1.8
#> 5 2 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.8, 1.5, 1.5, 1.5
#> 6 2 2.0, 2.1, 2.1, 2.2, 2.2, 2.2
#> 7 2 1.4, 1.5, 1.5, 1.6, 1.6, 1.5
#> 8 2 2.0, 2.0, 2.1, 2.2, 2.1, 2.1
#> 9 2 1.5, 1.5, 1.6, 1.7, 1.9, 2.0
#> 10 2 1.9, 1.8, 1.9, 2.1, 2.0, 2.3
#> 11 2 1.6, 1.6, 1.7, 1.7, 1.8, 1.7
#> 12 2 1.3, 1.3, 1.3, 1.3, 1.4, 1.4
#> 13 2 2.2, 2.2, 2.2, 2.3, 2.5
#> 14 2 1.3, 1.4, 1.5, 1.5, 1.6, 1.8
#> 15 2 1.6, 1.6, 1.7, 1.7, 1.8, 1.7
#> 16 2 2.2, 2.5, 2.5, 2.6, 2.6, 2.6
#> 17 2 1.4, 1.5, 1.6, 1.9, 1.8, 2.3, 2.0
#> 18 2 0
#> 19 2 1.7, 1.7, 1.7, 1.7, 1.7, 1.7
#> 20 2 1.6, 1.8, 1.8, 2.0, 2.0, 2.0