Summarize current data per 5-min for statistical tests
Source:R/Process-data.R
make_summary_EPSC_data.Rd
make_summary_EPSC_data()
allows you to divide data from a long recording
(e.g. 30 minutes) into evenly-spaced intervals (e.g. 5 minutes). It will
generate summary data like the mean current amplitude for each interval. This
can be useful for inserting into statistical models to compare effect sizes
across broad stretches of time. The interval length would have been
previously specified in make_normalized_EPSC_data()
using the
interval_length
argument.
Usage
make_summary_EPSC_data(
data = patchclampplotteR::sample_raw_eEPSC_df,
current_type = "eEPSC",
save_output_as_RDS = "no",
decimal_places = 2
)
Arguments
- data
A
data.frame
object. If the data are evoked currents (current_type == "eEPSC"
), this should be the raw evoked current data generated usingmake_normalized_EPSC_data()
. If the data are spontaneous currents (current_type == "sEPSC"
), this should be the pruned data$individual_cells
dataset generated usingmake_pruned_EPSC_data()
.- current_type
A character describing the current type. Allowed values are "eEPSC" or "sEPSC".
- save_output_as_RDS
A character ("yes" or "no") describing if the resulting object should be saved as an RDS file in the raw data folder.
- decimal_places
A numeric value indicating the number of decimal places the data should be rounded to. Used to reduce file size and prevent an incorrect representation of the number of significant digits.
Value
A dataframe with summary data such as the mean current amplitude, coefficient of variation, standard deviation, standard error, variance, variance-to-mean ratio, and inverse coefficient of variation squared for each interval.
New columns for evoked current data (current_type == "eEPSC"
) include:
mean_P1_transformed
The amplitude of the first evoked current amplitude (% Baseline eEPSC amplitude) normalized to the mean baseline amplitude and averaged over the interval.mean_P1_raw
The amplitude of the first evoked current amplitude (pA) averaged over the interval.n
The number of datapoints used to create the averaged values. Corresponds to the number of sweeps per interval.sd
The standard deviation of the normalized evoked current data (P1_transformed
).cv
The coefficient of variation ofP1_transformed
.se
The standard error ofP1_transformed
.cv_inverse_square
The inverse of the squared coefficient of variation ofP1_transformed
.variance
The variance ofP1_transformed
.VMR
The variance-to-mean ratio (VMR) ofP1_transformed
.interval
A character value indicating the interval that the data point belongs to. For example,interval
will be "t0to5" for any data points from 0 to 5 minutes. Example values: "t0to5", "t5to10", etc.letter, synapses, sex, treatment, etc.
Unmodified columns from the original dataset describing the cell's properties.
New columns for spontaneous current data (current_type == "sEPSC"
) include:
mean_transformed_amplitude
The average normalized spontaneous current amplitude (% Baseline sEPSC amplitude).mean_raw_amplitude
The average raw spontaneous current amplitude (pA).n
The number of datapoints used to create the average.sd_transformed_amplitude
The standard deviation of the normalized spontaneous current data (mean_transformed_amplitude
).se_transformed_amplitude
The standard error ofmean_transformed_amplitude
.mean_transformed_frequency
The average normalized frequency (% Baseline frequency).sd_transformed_frequency
The standard deviation ofmean_transformed_frequency
.se_frequency
The standard error ofmean_transformed_frequency
.mean_raw_frequency
The average raw frequency (Hz).letter, synapses, sex, treatment, etc.
Unmodified columns from the original dataset describing the cell's properties.
Examples
make_summary_EPSC_data(
data = sample_raw_eEPSC_df,
current_type = "eEPSC",
save_output_as_RDS = "no",
decimal_places = 2
)
#> # A tibble: 95 × 20
#> category letter sex treatment interval mean_P1_transformed mean_P1_raw
#> <fct> <fct> <fct> <fct> <fct> <dbl> <dbl>
#> 1 2 AO Male Control t0to5 100 36.8
#> 2 2 AO Male Control t5to10 34.0 12.5
#> 3 2 AO Male Control t10to15 17.7 6.49
#> 4 2 AO Male Control t15to20 18.6 6.85
#> 5 2 AO Male Control t20to25 21.3 7.82
#> 6 2 AZ Female Control t0to5 100 44.3
#> 7 2 AZ Female Control t5to10 74.1 32.8
#> 8 2 AZ Female Control t10to15 53.7 23.8
#> 9 2 AZ Female Control t15to20 56.0 24.8
#> 10 2 AZ Female Control t20to25 50.7 22.4
#> # ℹ 85 more rows
#> # ℹ 13 more variables: n <dbl>, sd <dbl>, cv <dbl>, se <dbl>,
#> # cv_inverse_square <dbl>, variance <dbl>, VMR <dbl>, age <dbl>,
#> # animal <dbl>, X <dbl>, Y <dbl>, time <dbl>, synapses <fct>
make_summary_EPSC_data(
data = sample_pruned_sEPSC_df$individual_cells,
current_type = "sEPSC",
save_output_as_RDS = "no",
decimal_places = 2
)
#> # A tibble: 35 × 16
#> # Groups: category, letter, sex, treatment [7]
#> category letter sex treatment interval mean_transformed_amplitude
#> <fct> <fct> <fct> <fct> <fct> <dbl>
#> 1 2 AZ Female Control t0to5 100.
#> 2 2 AZ Female Control t5to10 96.6
#> 3 2 AZ Female Control t10to15 94.5
#> 4 2 AZ Female Control t15to20 94.6
#> 5 2 AZ Female Control t20to25 88.3
#> 6 2 BO Male HNMPA t0to5 100.
#> 7 2 BO Male HNMPA t5to10 89.3
#> 8 2 BO Male HNMPA t10to15 81.9
#> 9 2 BO Male HNMPA t15to20 82.2
#> 10 2 BO Male HNMPA t20to25 82.0
#> # ℹ 25 more rows
#> # ℹ 10 more variables: mean_raw_amplitude <dbl>,
#> # sd_transformed_amplitude <dbl>, n <dbl>, se_transformed_amplitude <dbl>,
#> # mean_transformed_frequency <dbl>, sd_transformed_frequency <dbl>,
#> # se_transformed_frequency <dbl>, mean_raw_frequency <dbl>, time <dbl>,
#> # synapses <fct>