
Perform t-tests (or Wilcoxon tests) for EPSC summary plots
Source:R/Process-data.R
perform_t_tests_for_summary_plot.RdThis function enables you to perform a series of paired t-tests (or Wilcoxon tests) comparing the
mean current amplitude within each interval relative to the mean current
amplitude during the baseline. This uses the pairwise_t_test or pairwise_wilcox_test functions from
rstatix, with paired = TRUE and Holm's adjustment for multiple
comparisons (p_adjust_method = "holm") by default. The resulting output table can also
be used to apply significance stars to the plot in
plot_summary_current_data().
Usage
perform_t_tests_for_summary_plot(
data,
include_all_treatments = "yes",
list_of_treatments = NULL,
include_all_categories = "yes",
list_of_categories = NULL,
current_type = "eEPSC",
parameter = "amplitude",
baseline_interval = "t0to5",
interval_length = 5,
treatment_colour_theme,
test_type = "pairwise.t.test",
p_adjust_method = "holm",
save_output_as_RDS = "no"
)Arguments
- data
A dataframe containing the summary data generated from
make_summary_EPSC_data(). Ifcurrent_typeis "eEPSC", this must be the$summary_dataelement of the list produced bymake_summary_EPSC_data().- include_all_treatments
A character (
"yes"or"no") specifying if the plot will include data from all treatments. If"no", you must specify a list of treatments inlist_of_treatments.- list_of_treatments
A list of character values describing the treatments that will be in the plot. Defaults to
NULL, since include_all_treatments is"yes"by default.- include_all_categories
A character (
"yes"or"no") specifying if the table will include data from all categories. If"no", you must specify a list of categories inlist_of_categories.- list_of_categories
A list of character values describing the categories that will be in the table. Defaults to
NULL, sinceinclude_all_categoriesis"yes"by default.- current_type
A character describing the current type. Allowed values are
"eEPSC"or"sEPSC".- parameter
A character value specifying the parameter to be plotted on the y-axis. For evoked currents (
current_type = "eEPSC"), the available parameter is "amplitude", which contains amplitudes normalized relative to the baseline. For spontaneous currents (current_type = "sEPSC"), the available parameters are "amplitude" (normalized currents), "raw_amplitude", "frequency" (normalized frequency) or "raw_frequency".- baseline_interval
A character value indicating the name of the interval used as the baseline. Defaults to
"t0to5", but can be changed. Make sure that this matches the baseline interval that you set inmake_normalized_EPSC_data().- interval_length
Length of each interval (numeric; in minutes). Used to divide the dataset into broad ranges for statistical analysis. Important!
max_recording_lengthmust be evenly divisible byinterval_length. Defaults to5.- treatment_colour_theme
A dataframe containing treatment names and their associated colours as hex values. See sample_treatment_names_and_colours for an example of what this dataframe should look like.
- test_type
A character (must be
"pairwise.wilcox.test"or"pairwise.t.test") describing the statistical model used in this function.- p_adjust_method
This argument is directly related to
p.adjust.methodinrstatix::t_test. This is the method used to adjust the p-value in multiple pairwise comparisons. Allowed values include"holm","hochberg","hommel","bonferroni","BH","BY","fdr","none"(although"none"is NOT recommended).- save_output_as_RDS
A character (
"yes"or"no") describing if the resulting object should be saved as an RDS file in the raw data folder.
References
Nutter B (2018). lazyWeave: LaTeX Wrappers for R #' Users. R package version 3.0.2, https://CRAN.R-project.org/package=lazyWeave.
See also
make_normalized_EPSC_data() for an example of how the normalized
current amplitudes were created.
Examples
perform_t_tests_for_summary_plot(
data = sample_summary_eEPSC_df$summary_data,
include_all_treatments = "yes",
list_of_treatments = NULL,
current_type = "eEPSC",
parameter = "amplitude",
baseline_interval = "t0to5",
test_type = "pairwise.t.test",
interval_length = 5,
treatment_colour_theme = sample_treatment_names_and_colours,
save_output_as_RDS = "no"
)
#> # A tibble: 16 × 15
#> # Groups: category, treatment [4]
#> group2 asterisk_time category treatment .y. group1 n1 n2 statistic
#> <chr> <dbl> <fct> <fct> <chr> <chr> <int> <int> <dbl>
#> 1 t5to10 7.5 2 Control mean… t0to5 4 4 2.28
#> 2 t10to15 12.5 2 Control mean… t0to5 4 4 4.89
#> 3 t15to20 17.5 2 Control mean… t0to5 4 4 6.96
#> 4 t20to25 22.5 2 Control mean… t0to5 4 4 8.01
#> 5 t5to10 7.5 2 HNMPA mean… t0to5 5 5 3.1
#> 6 t10to15 12.5 2 HNMPA mean… t0to5 5 5 3.15
#> 7 t15to20 17.5 2 HNMPA mean… t0to5 5 5 2.99
#> 8 t20to25 22.5 2 HNMPA mean… t0to5 5 5 3.19
#> 9 t5to10 7.5 2 PPP mean… t0to5 5 5 0.78
#> 10 t10to15 12.5 2 PPP mean… t0to5 5 5 0.89
#> 11 t15to20 17.5 2 PPP mean… t0to5 5 5 1.5
#> 12 t20to25 22.5 2 PPP mean… t0to5 5 5 1.96
#> 13 t5to10 7.5 2 PPP_and_HN… mean… t0to5 5 5 -0.59
#> 14 t10to15 12.5 2 PPP_and_HN… mean… t0to5 5 5 0.94
#> 15 t15to20 17.5 2 PPP_and_HN… mean… t0to5 5 5 0.84
#> 16 t20to25 22.5 2 PPP_and_HN… mean… t0to5 5 5 1.39
#> # ℹ 6 more variables: df <dbl>, p <dbl>, p.adj <dbl>, p.adj.signif <chr>,
#> # p_string <chr>, significance_stars <chr>