
Perform t-tests (or Wilcoxon tests) for EPSC summary plots
Source:R/Process-data.R
perform_t_tests_for_summary_plot.Rd
This function enables you to perform a series of paired t-tests (or Wilcoxon tests) comparing the
mean current amplitude within each interval relative to the mean current
amplitude during the baseline. This uses the pairwise_t_test
or pairwise_wilcox_test
functions from
rstatix
, with paired = TRUE
and Holm's adjustment for multiple
comparisons (p_adjust_method = "holm"
) by default. The resulting output table can also
be used to apply significance stars to the plot in
plot_summary_current_data()
.
Usage
perform_t_tests_for_summary_plot(
data,
include_all_treatments = "yes",
list_of_treatments = NULL,
include_all_categories = "yes",
list_of_categories = NULL,
current_type = "eEPSC",
parameter = "amplitude",
baseline_interval = "t0to5",
interval_length = 5,
treatment_colour_theme,
test_type = "pairwise.t.test",
p_adjust_method = "holm",
save_output_as_RDS = "no"
)
Arguments
- data
A dataframe containing the summary data generated from
make_summary_EPSC_data()
. Ifcurrent_type
is "eEPSC", this must be the$summary_data
element of the list produced bymake_summary_EPSC_data()
.- include_all_treatments
A character (
"yes"
or"no"
) specifying if the plot will include data from all treatments. If"no"
, you must specify a list of treatments inlist_of_treatments
.- list_of_treatments
A list of character values describing the treatments that will be in the plot. Defaults to
NULL
, since include_all_treatments is"yes"
by default.- include_all_categories
A character (
"yes"
or"no"
) specifying if the table will include data from all categories. If"no"
, you must specify a list of categories inlist_of_categories
.- list_of_categories
A list of character values describing the categories that will be in the table. Defaults to
NULL
, sinceinclude_all_categories
is"yes"
by default.- current_type
A character describing the current type. Allowed values are
"eEPSC"
or"sEPSC"
.- parameter
A character value specifying the parameter to be plotted on the y-axis. For evoked currents (
current_type = "eEPSC"
), the available parameter is "amplitude", which contains amplitudes normalized relative to the baseline. For spontaneous currents (current_type = "sEPSC"
), the available parameters are "amplitude" (normalized currents), "raw_amplitude", "frequency" (normalized frequency) or "raw_frequency".- baseline_interval
A character value indicating the name of the interval used as the baseline. Defaults to
"t0to5"
, but can be changed. Make sure that this matches the baseline interval that you set inmake_normalized_EPSC_data()
.- interval_length
Length of each interval (numeric; in minutes). Used to divide the dataset into broad ranges for statistical analysis. Important!
max_recording_length
must be evenly divisible byinterval_length
. Defaults to5
.- treatment_colour_theme
A dataframe containing treatment names and their associated colours as hex values. See sample_treatment_names_and_colours for an example of what this dataframe should look like.
- test_type
A character (must be
"pairwise.wilcox.test"
or"pairwise.t.test"
) describing the statistical model used in this function.- p_adjust_method
This argument is directly related to
p.adjust.method
inrstatix::t_test
. This is the method used to adjust the p-value in multiple pairwise comparisons. Allowed values include"holm"
,"hochberg"
,"hommel"
,"bonferroni"
,"BH"
,"BY"
,"fdr"
,"none"
(although"none"
is not recommended).- save_output_as_RDS
A character (
"yes"
or"no"
) describing if the resulting object should be saved as an RDS file in the raw data folder.
References
Nutter B (2018). lazyWeave: LaTeX Wrappers for R #' Users. R package version 3.0.2, https://CRAN.R-project.org/package=lazyWeave.
See also
make_normalized_EPSC_data()
for an example of how the normalized
current amplitudes were created.
Examples
perform_t_tests_for_summary_plot(
data = sample_summary_eEPSC_df$summary_data,
include_all_treatments = "yes",
list_of_treatments = NULL,
current_type = "eEPSC",
parameter = "amplitude",
baseline_interval = "t0to5",
test_type = "pairwise.t.test",
interval_length = 5,
treatment_colour_theme = sample_treatment_names_and_colours,
save_output_as_RDS = "no"
)
#> # A tibble: 16 × 15
#> # Groups: category, treatment [4]
#> group2 asterisk_time category treatment .y. group1 n1 n2 statistic
#> <chr> <dbl> <fct> <fct> <chr> <chr> <int> <int> <dbl>
#> 1 t5to10 7.5 2 Control mean… t0to5 4 4 2.28
#> 2 t10to15 12.5 2 Control mean… t0to5 4 4 4.89
#> 3 t15to20 17.5 2 Control mean… t0to5 4 4 6.96
#> 4 t20to25 22.5 2 Control mean… t0to5 4 4 8.01
#> 5 t5to10 7.5 2 HNMPA mean… t0to5 5 5 3.1
#> 6 t10to15 12.5 2 HNMPA mean… t0to5 5 5 3.15
#> 7 t15to20 17.5 2 HNMPA mean… t0to5 5 5 2.99
#> 8 t20to25 22.5 2 HNMPA mean… t0to5 5 5 3.19
#> 9 t5to10 7.5 2 PPP mean… t0to5 5 5 0.78
#> 10 t10to15 12.5 2 PPP mean… t0to5 5 5 0.89
#> 11 t15to20 17.5 2 PPP mean… t0to5 5 5 1.5
#> 12 t20to25 22.5 2 PPP mean… t0to5 5 5 1.96
#> 13 t5to10 7.5 2 PPP_and_HN… mean… t0to5 5 5 -0.59
#> 14 t10to15 12.5 2 PPP_and_HN… mean… t0to5 5 5 0.94
#> 15 t15to20 17.5 2 PPP_and_HN… mean… t0to5 5 5 0.84
#> 16 t20to25 22.5 2 PPP_and_HN… mean… t0to5 5 5 1.39
#> # ℹ 6 more variables: df <dbl>, p <dbl>, p.adj <dbl>, p.adj.signif <chr>,
#> # p_string <chr>, significance_stars <chr>